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Abstract: Retinal volume computation is one of the critical steps in grading pathologies and evaluat-
ing the response to a treatment. We propose a deep-learning-based visualization tool to calculate
the fluid volume in retinal optical coherence tomography (OCT) images. The pathologies under
consideration are Intraretinal Fluid (IRF), Subretinal Fluid (SRF), and Pigmented Epithelial De-
tachment (PED). We develop a binary classification model for each of these pathologies using the
Inception-ResNet-v2 and the small Inception-ResNet-v2 models. For visualization, we use several
standard Class Activation Mapping (CAM) techniques, namely Grad-CAM, Grad-CAM++, Score-
CAM, Ablation-CAM, and Self-Matching CAM, to visualize the pathology-specific regions in the
image and develop a novel Ensemble-CAM visualization technique for robust visualization of OCT
images. In addition, we demonstrate a Graphical User Interface that takes the visualization heat
maps as the input and calculates the fluid volume in the OCT C-scans. The volume is computed
using both the region-growing algorithm and selective thresholding technique and compared with
the ground-truth volume based on expert annotation. We compare the results obtained using the
standard Inception-ResNet-v2 model with a small Inception-ResNet-v2 model, which has half the
number of trainable parameters compared with the original model. This study shows the relevance
and usefulness of deep-learning-based visualization techniques for reliable volumetric analysis.

Keywords: optical coherence tomography; deep learning; visualization; classification; fluid volume
computation

1. Introduction

Intraretinal Fluid (IRF), Subretinal Fluid (SRF), and Pigmented Epithelial Detachment
(PED) are three of the most prevalent retinal pathologies [1–3]. Quantitative measures
of retinal fluids are important biomarkers, and fluid volume computation from optical
coherence tomography (OCT) scans by artificial intelligence (AI) algorithms can guide
the treatment of exudative retinal conditions, such as Neovascular Age-related Macular
Degeneration (NAMD). In NAMD, pathological fluids accumulate in different compart-
ments of the retina—IRF inside the retina, SRF beneath the neurosensory retina, and PED
between the Retinal Pigment Epithelium (RPE) and Bruch’s membrane (BM). Different
types of OCT technologies are used to capture the retina of the eye, such as time-domain,
spectral-domain, and swept-source OCT [4]. In this paper, we use data generated from com-
mercially available CIRRUS and PRIMUS OCT machines, which are spectral-domain-based
OCT machines.
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OCT captures structural information of the retina using the principle of coherent detec-
tion. Coherent detection produces multiplicative noise, known as speckle in the acquired
images. Speckle lowers image quality and makes visual and automated analysis of OCT
images challenging [5]. The noise statistics in OCT images play a significant role in develop-
ing suitable despeckling algorithms. Various data distributions have been proposed in the
literature for modeling speckles in OCT images. According to Bashkansky and Reintjes [6],
speckle noise follows a Gaussian distribution. Pircher et al. [7] and Karamata et al. [8]
suggested that speckle noise follows a Rayleigh distribution. Schmitt et al. [9] proposed an
exponentially decaying distribution for speckle. Sudeep et al. [10] proposed a denoising
method based on the Gamma distribution for speckle reduction in OCT images. In this
paper, we model the speckle noise as gamma distribution and perform denoising of OCT
images as the first step.

Deep learning has produced remarkable advancements in the field of healthcare [11–14],
especially in the automatic detection of retinal abnormalities such as glaucoma, diabetic
retinopathy, Diabetic Macular Edema (DME), Age-related Macular Degeneration (AMD),
and Retinal Vein Occlusion (RVO). Deep-learning-based classifiers are used to detect the
relationship between the multiple input features in the image and analyze the relationships
between these features to make predictions or classifications. By leveraging the complex
patterns and representations learned by the model, it can provide an overall prediction
based on these detected features. However, for deploying these classifiers in the real world,
there is a need to provide an explanation of the relationships captured among the features
of the image. This problem of explainable artificial intelligence (XAI) can be addressed
to a certain extent by using appropriate visualization tools. Techniques such as Grad-
CAM [15], Grad-CAM++ [16], Score-CAM [17], Ablation-CAM [18], and Selfmatching-
CAM [19] are used to explain which features of the image are significant contributors to the
prediction score. Explainability enhances the confidence of doctors in deploying AI models
in real-world applications. The models are otherwise considered opaque or black-box type.
Explainability in AI has now become an indispensable part of the deployment pipeline,
because when deploying a deep learning model in real-world scenarios, it is crucial to
be able to explain and interpret the model’s decisions or predictions, particularly when
dealing with medical applications. Explainability in AI is necessary to provide insights
and justifications to doctors or medical professionals, enabling them to understand why
a certain deep learning model is classifying an image into a specific pathology. Through
explainability, doctors can gain trust and confidence in the model’s capabilities, facilitating
its adoption and integration into clinical practice.

There are several studies available in the literature that proposed automatic volume
computation of retinal fluid. Typically, one performs segmentation for calculating the fluid
volume, for instance, Yukun et al.’s Retinal Fluid Segmentation Network (ReF-Net) [20],
Thomas et al.’s encoder–decoder-based segmentation network [21], Wilson et al.’s U-Net-
based architecture [22], and Lu et al.’s automated segmentation technique [23]. To the
best of our knowledge, ours is the first attempt at adopting the visualization outcome of
a deep learning model for retinal fluid volume computation instead of a segmentation
output. Typically, one employs a segmentation-based approach for calculating the retinal
fluid volume. However, our methodology is significantly different, as we utilize the results
obtained from visualization techniques. We also present a Graphical User Interface (GUI)
for automatic fluid volume computation. We consider GradCAM, GradCAM++, Score-
CAM, Ablation-CAM, and Self-Matching-CAM as visualization techniques for the binary
classification models, which detect IRF, SRF, and PED pathologies in the retinal OCT images.
The volume is computed separately for IRF, SRF, and PED. In addition, we also propose a
novel fusion technique, namely Ensemble-CAM, which is a robust visualization technique.

A combination of IRF, SRF, and PED, as well as fluid volume variations, are used
to categorize Age-related Macular Degeneration (AMD) patient response to antivascular
endothelial growth factor (Anti-VEGF) therapy. The AMD patient is categorized as a
Responder if the post-treatment fluid volume has reduced by more than 10% compared
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with the pretreatment fluid volume and as a Nonresponder if the post-treatment fluid
volume has increased or remained the same or reduced by less than 10% compared with
the pretreatment fluid volume. The automatic quantification of fluid response may be a
better means of monitoring than the current qualitative evaluation used in clinical practice.
The computed fluid volume could be a potential input to an AI model to predict the AMD
patient’s response to an Anti-VEGF injection [24]. The AI response prediction can help
clinicians in deciding the form of the treatment and could be a beneficial tool in the clinical
armamentarium for the therapeutic management of AMD.

Section 2 contains a description of the dataset used for classification and visualization
tasks and the methodology used in the paper. Section 3 presents the results obtained
for classification, visualization, and fluid volume computation, and Section 4 contains a
discussion of the results. Concluding remarks are given in Section 5.

Figure 1 shows an OCT image in which all three pathologies, namely IRF, SRF, and PED,
are present.

Figure 1. Various pathologies of interest that are observed in OCT images: IRF: Intraretinal Fluid;
SRF: Subretinal Fluid; and PED: Pigmented Epithelial Detachment.

2. Materials and Methods
2.1. Dataset

In this section, we present details of the datasets used for classification and visualization.

2.1.1. Classification Dataset

The dataset used in this study is proprietary to Carl Zeiss and is the same as the one
used in our recent publication [25]. It comprises OCT B-scan images stacked as cubes.
The images are obtained using two brands of Carl Zeiss machines—CIRRUS and PRIMUS.
There are, in turn, two variants of CIRRUS, one that captures 200 images per cube and
an other that captures 128 images per cube. There are two types of PRIMUS machines,
of which one captures 128 images per cube and an other that captures 32 images per
cube. The training and test data for classification consist of 207,535 and 52,650 images,
respectively. The B-scan images from CIRRUS and PRIMUS are of size 1024 × 512 and
1024 × 200, respectively.

2.1.2. Segmentation Dataset

The ground-truth segmentation data required for visualization is available for 73 cubes,
each, in turn, containing 128 B-scans, making up a total of 9344 (73 × 128) images. Of these,
1235, 1361, and 3686 images have IRF, SRF, and PED pathologies, respectively.
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2.1.3. Performance Measures

The segmentation ground truth is given by an expert and is used for the computation of
the Jaccard Index/Intersection over Union (IoU) [26] and Dice score [27,28] given as follows:

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| , (1)

and

Dice(A, B) =
2|A ∩ B|
|A|+ |B| , (2)

where A is the generated mask, B is the ground truth mask, and |·| represents the cardinality
of the set.

2.2. Architecture of the Model

In this work, we use the Inception-ResNet-v2 [29] to develop the binary classification
models for each pathology. Figure 2a shows the standard Inception-ResNet-v2 architecture
divided into several parts, such as stem, Inception-A, Inception-B, Inception-C, Reduction-
A, and Reduction-B, each explained in the following:

(a) (b) (c)

Figure 2. Block diagram of (a) Inception-ResNet-v2 architecture; (b) Small Inception-ResNet-v2
architecture; and (c) Stem.

1. Stem: The stem of the Inception-Resnet-v2 architecture consists of a convolutional
layer followed by a max pooling layer, and several convolutional layers with increas-
ing dilation rates.

2. Inception-ResNet-A: The Inception-A blocks consist of multiple branches, each of
which applies a different type of operation (such as convolution or pooling) to the
input. These branches are then concatenated together and passed through a final
convolutional layer.

3. Inception-ResNet-B: The Inception-B blocks are similar to Inception-A blocks, but with
a different set of operations. It uses an average pooling operation followed by a con-
volutional layer.
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4. Inception-ResNet-C: Inception-C blocks are also similar to Inception-B blocks but
with a different set of operations and a larger number of filters.

5. Reduction: Reduction-A and Reduction-B blocks reduce the spatial dimensions of the
feature maps. They consist of several convolutional layers and max pooling layers.

Finally, the output of the last block is fed into an average pooling layer, followed by a
dropout layer and a fully connected layer, which produces the final output. The Inception-
ResNet-v2 is trained on 1 million images from ImageNet [30] dataset with 1000 classes. We
fine-tuned the model using the training dataset with two classes.

2.3. Comparison with Small Inception-ResNet-v2

We developed a novel small Inception-ResNet-v2 architecture, which has a similar
skeleton to the original Inception-ResNet-v2 but with half the number of trainable parame-
ters (28 million parameters as opposed to 56 million trainable parameters). Ten Inception-
ResNet-A, twenty Inception-ResNet-B, and ten Inception-ResNet-C layers in Inception-
ResNet-v2 architecture are replaced by eight Inception-ResNet-A, seven Inception-ResNet-
B, and four Inception-ResNet-C layers, respectively, to obtain the small Inception-ResNet-v2
architecture shown in Figure 2b. Figure 2c shows the stem.

2.4. Denoising

The OCT images obtained from the OCT scanners are typically noisy. Hence, there is a
need to perform mild denoising of the images. If the models are trained directly on noisy
images, there is a chance that the model might fit the noise in the image rather than the
pathological features of interest. After experimenting with several noise models, we found
the gamma distribution to be an appropriate model for the noise in OCT images. We carry
out denoising using the Gated Convolution and Deconvolution Structure (GCDS) model [5].
Figure 3a,b shows the noisy OCT image and the denoised OCT image, respectively, obtained
from the GCDS model. The advantages of the GCDS model are as follows:

(a) (b)

Figure 3. (a) Noisy OCT image and (b) Denoised OCT image using GCDS.

• The GCDS model consists of two phases—an encoding phase and a decoding phase.
The encoding phase consists of 5 convolution layers that create a representation that
encapsulates all fundamental features but leaves out the noise.
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• The model also contains skip connections between corresponding convolution and
deconvolution layers. These skip connections reduce the number of weights to be
trained in the neural network, which leads to quicker convergence of the model.

• Each skip connection is associated with a gating factor, which determines the ratio of
split of the information between the next convolution layer and the corresponding
deconvolution layer.

2.5. Classification of the OCT Images

We now present the details involved in training the classification model.
Figure 4 shows the pipeline for training a classification model. From here on, we refer

to the model trained on noisy images as the noisy model; the model trained on denoised
images obtained from the GCDS model using original Inception-ResNet-v2 architecture
as the Inception-ResNet-v2 GCDS model; and the model trained on denoised images
obtained from the GCDS model using small Inception-ResNet-v2 architecture as the small
Inception-ResNet-v2 GCDS model. For the Inception-ResNet-v2 GCDS model and small
Inception-ResNet-v2 GCDS model training, noisy OCT images are denoised and used for
training the classification model. Post training, we evaluate the performance of the model
on the test dataset and compute the classification metrics. For training the noisy model,
the denoising step is bypassed, and all the other steps remain the same.

Figure 4. The pipeline for the training classification model: Path-1 is the pipeline for the Inception-
ResNet-v2 GCDS model and small Inception-ResNet-v2 GCDS model, whereas Path-2 is the pipeline
for the noisy model.

Training Phase

We trained the classification model on 207,535 images. Each image carries labels
for IRF, SRF, and PED. For training the classifier, we resize the images, which are of size
(1024, 512, 3) to (450, 450, 3) for compatibility with the Inception-ResNet-v2 architecture.
The model is tested using data consisting of 52,650 images. We used an Inception-ResNet-v2
architecture pretrained on the ImageNet dataset. We fine-tuned the pretrained model using
OCT training images. We used the Adam optimization algorithm [31], which combines
adaptive gradient methods and stochastic optimization techniques. Adam has been shown
to be effective in various deep learning tasks, as it dynamically adjusts the learning rate
based on the gradient magnitudes of individual parameters.

We set the learning rate to 10−4, which was chosen based on empirical observations
and previous research in the field. This learning rate provides a good balance between
convergence speed and stability, ensuring that the model converges to a suitable solution
while avoiding overshooting or instability issues.

The training phase comprises iterative updating of the model parameters using back-
propagation and stochastic gradient descent. The Adam optimizer adjusted the learning
rate for each parameter separately, allowing the model to effectively adapt to different fea-
tures and gradients present in the training data. The loss function employed is Categorical
Cross-Entropy (CCE) [32] given by



Diagnostics 2023, 13, 2659 7 of 24

CCE Loss = −
output size

∑
i=1

yi · log ŷi, (3)

where ŷi is the ith entry (scalar value) in the model output, yi is the corresponding target
value, and the output size is the number of scalar values in the model output.

2.6. Visualization of the OCT Images

Due to the black-box nature of the deep-learning-based classification models, there is a
need for explainability of the model. We consider standard visualization-based techniques
such as GradCAM, GradCAM++, Score-CAM, Ablation-CAM, and Self-Matching-CAM on
the binary classification models of IRF, SRF, and PED. These visualization techniques help
doctors understand why the model made a certain decision for an image by highlighting
relevant parts of the image. Figure 5b shows the Grad-CAM output of the GCDS denoised
OCT image shown in Figure 5a. In the heat map, the yellow region indicates the most
relevant region, and the relevance decreases as the color changes from yellow to blue.

(a) (b)

Figure 5. (a) GCDS denoised OCT image and (b) GradCAM output.

Ensemble CAM

We applied standard visualization techniques such as Grad-CAM (GD), Grad-CAM++
(GD++), Score-CAM (SC), Ablation-CAM (AC), and Self-Matching-CAM (SM) on the nine
binary classification models developed for each of the three pathologies using the noisy
OCT images and denoised OCT images. The heat maps obtained from the visualization
techniques are converted to binary maps using the Otsu thresholding [33] technique.
The procedure is applied to expert-annotated ground-truth segmentation comprising 128
B-scans, making up a total of 9344 (73 × 128) images to calculate the Intersection over
Union (IoU) and Dice scores.

We observed that for several OCT images, the heat maps given by various visualization
techniques are not always in agreement, as the techniques emphasize different regions in
the OCT image. The Ensemble CAM output is a binary map with the value at a certain pixel
equal to one, where three or more than three visualization techniques agree with each other.
Computationally, the Ensemble CAM heat map can be obtained by simply adding the five
binarized class activation maps and using binary thresholding with a threshold value of
three. Figure 6 shows the binary maps obtained from various visualization techniques,
including the Ensemble-CAM that we developed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. This figure shows the outputs from the Inception-ResNet-v2 GCDS model: (a) OCT image;
(b) ground truth; (c) Grad-CAM binary map; (d) Grad-CAM++ binary map; (e) Score-CAM binary
map; (f) Ablation-CAM binary map; (g) Self-Matching-CAM binary map; and (h) Ensemble-CAM
binary map.

2.7. Retinal Fluid Volume Computation

AI-based fluid volume computation compared with manual-annotations-based vol-
ume computation saves an enormous amount of time and removes intraobserver and
interobserver variability. Currently, the device does not provide clinicians the ability to
measure fluid volumes automatically, and the assessment is performed by visual inspec-
tion. An automatic fluid volume computation tool would greatly enable the clinicians in
providing reliable diagnosis.

The fluid volume is computed using two different techniques, namely the region-growing
algorithm [34,35] and the thresholding technique. We computed the volumes of 73 C-scans for
IRF, SRF, and PED pathologies separately using the region-growing and thresholding techniques.

Figure 7 shows the pipeline for computing the volume of IRF, SRF, and PED in a
C-scan. First, forthe Inception-ResNet-v2 GCDS model and the small Inception-ResNet-v2
GCDS model, we pass the noisy OCT images through the denoising model and preprocess
them before passing them to the classification model. If the prediction score is more than
0.5, we pass the preprocessed image through the visualization technique to obtain the
heat map, which is further binarized using the Otsu thresholding technique [33]. Figure 8
shows the snapshots of the Graphical User Interface (GUI) created for volume computation.
The doctors select a C-scan and press the volume computation button to display the results.
Four images are displayed in the GUI—the input image, the CAM output, the binary map
obtained from the CAM heat map, and the ground truth corresponding to the input image.



Diagnostics 2023, 13, 2659 9 of 24

Figure 7. This figure shows the pipeline for volume computation: Path-1 is the pipeline for the
Inception-ResNet-v2 GCDS model and small Inception-ResNet-v2 GCDS model, while Path-2 is the
pipeline for the noisy model.

(a)

(b)

Figure 8. (a) Visualization output and (b) Graphical User Interface displaying the computed volume.

2.8. Post Processing

We used a classification model to gain insights into the explainability of the model’s
predictions. To visualize the important regions contributing to the model’s decision-making
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process, we employed several popular techniques, such as GradCAM, GradCAM++, Score-
CAM, LayerCAM, and AblationCAM. These techniques generate heat maps that highlight
the regions of interest in the input image. However, we observed that these heat maps only
provided an indication of the regions without precisely outlining the boundaries of the
specific regions of interest. This limitation became apparent when dealing with conditions
such as IRF (Intraretinal Fluid) and SRF (Subretinal Fluid), where it is crucial to localize the
presence of fluid in the retina precisely.

We explored two additional techniques to address this issue, selective thresholding
and region-growing, with the aim of refining the heat maps generated by the CAM tech-
niques by emphasizing the regions corresponding to fluid-containing areas. We noticed
that these regions appeared darker in contrast to the other areas. By applying selective
thresholding and region-growing techniques, we improved the localization of the fluid-
contained regions and obtained more accurate outlines of these regions. These techniques
allowed us to enhance the interpretability of the classification model for identifying and
precisely delineating the presence of fluid in the retina, specifically for IRF and SRF.

2.8.1. Region-Growing Technique

To further enhance the identification and delineation of regions of interest, we em-
ployed the region-growing technique [36,37], leveraging the CAM output from the clas-
sification model. The purpose was to identify potential regions within the image that
corresponded to specific features, particularly in the case of Intraretinal Fluid (IRF) and
Subretinal Fluid (SRF).

The region-growing approach comprises the following steps:

1. Thresholding and contour extraction: The CAM output was thresholded to convert
it into a binary image. Contours were then extracted from the binary image. The cen-
troids of these contours were considered as seed points, representing potential regions
of interest within the original input image.

2. Seed point selection: The centroids of the extracted contours served as the seed
points for region expansion. These seed points acted as starting points for the iterative
growth of the regions.

3. Region-growing algorithm: Starting from the seed points, a region-growing algo-
rithm was applied to expand the regions of interest iteratively. This algorithm exam-
ined the neighboring pixels of each seed point and determined their inclusion in the
growing region based on predefined criteria.

4. Inclusion criteria: The decision to include neighboring pixels in the growing region
was based on a specific criterion, which involved evaluating the pixel intensity differ-
ence between the seed pixel and the corresponding neighboring pixel. If the difference
was below a predefined threshold, such as 15, the neighboring pixel was considered
similar and included in the region. Otherwise, it was excluded.

By iteratively growing the regions based on the inclusion criteria, we could accurately
outline the desired regions of interest, specifically the fluid-contained areas in the case of
IRF and SRF. This enabled precise visualization and analysis of the extent and location of
these regions within the retinal images.

It is important to note that while the region-growing technique demonstrated effec-
tiveness in identifying and delineating fluid regions, its applicability may vary for different
conditions. For example, in the case of Pigment Epithelial Detachment (PED), where
the objective is to highlight layer detachment areas rather than fluid regions, alternative
techniques may be necessary to represent the specific features of interest accurately.

In summary, the region-growing technique, utilizing the CAM output and contour
extraction, allowed us to iteratively expand regions of interest and achieve accurate outlines
of fluid-contained areas. However, its suitability should be carefully considered in the
context of the specific condition under analysis. Alternative techniques may be required to
address different types of features and meet the specific requirements of the analysis.
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2.8.2. Selective Thresholding

In order to enhance the visualization and outline of regions of interest, we employed
a technique known as selective thresholding. This approach aimed to improve upon the
existing CAM-based visualization methods, such as GradCAM, GradCAM++, ScoreCAM,
LayerCAM, and AblationCAM, which provided highlight regions but lacked precise out-
lines. The specific goal was to highlight fluid-containing regions in the case of IRF and SRF,
while recognizing that a different approach was necessary for PED.

The selective thresholding process involved the following steps:

1. Obtaining the CAM output: We obtained the CAM output from the classification
model, which provided an indication of the regions of interest within the image.

2. Applying Otsu thresholding: To convert the CAM output into a binary image, we
applied the Otsu thresholding technique. This process assigns a value of 1 to pixels
that exceed a certain threshold and 0 to pixels that are below the threshold. The result
is a binary mask that highlights potential regions of interest.

3. Pixel-wise product: We then applied a pixel-wise product operation between the
original image and the binary mask. This operation allowed us to select and isolate
the regions in the image where the mask pixel values were 1. By doing so, we focused
only on the areas indicated by the CAM as regions of interest.

4. Histogram analysis: To further refine the selection, we analyzed the histogram of the
image. This analysis revealed that pixel values in the range of 25 to 50 exhibited a
significant spike, indicating the presence of the desired regions.

5. Thresholding the image: Based on the observation from the histogram analysis, we
applied a thresholding operation to the image. Pixels with values in the range of 20
to 50 were considered as 1, representing the regions of interest, while the remaining
pixels were set to 0. This thresholding step allowed us to achieve a more precise
outline of the desired regions.

6. Performance evaluation: We evaluated the effectiveness of selective thresholding by
assessing metrics such as Intersection over Union (IoU) and Dice score. The results
indicate a significant improvement in both metrics for the detection of fluid-containing
regions in IRF and SRF cases. However, it should be noted that selective thresholding
was not suitable for PED, as the objective in the case of PED was to highlight layer
detachment rather than fluid regions.

In summary, selective thresholding provided a refined visualization approach by
emphasizing the outline and extent of fluid-containing regions in the retinal images. While
it demonstrated promising results for specific conditions, its applicability varied depending
on the nature of the features of interest. For PED, alternative techniques were required to
accurately highlight the layer detachment areas. Figure 9 depicts the procedure adopted
for calculating the volume using the selective thresholding technique.

The volume computation process involves employing the region growing or selective
thresholding techniques for all the images in a C-scan to derive masks for each True Positive
image. Each pixel within the mask is considered as a cuboid, and the volume of the entire
scan is computed by summing up all the individual pixel volumes given in Equation (4)
across all the identified pixels in the C-scan. The volume occupied by each pixel vpixel [38]
is scanner-specific, and for the OCT scanners under consideration, it is given by

vpixel = 11.7× 47.2× 2.0 µm3. (4)
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(a) (b)

(c) (d)

(e) (f)

Figure 9. (a) OCT image; (b) binary mask obtained from visualization; (c) region of interest;
(d) histogram of the region of interest; (e) predicted region of interest from the selective thresh-
olding technique; and (f) ground-truth of the region of interest.

3. Results
3.1. Classification Results

Metrics such as True Positive, False Positive, True Negative, False Negative, Accu-
racy, Precision, Sensitivity, Specificity, and F1 score are used to evaluate the classification
performance. We refer to the positive labels as images in which the pathology is present
and negative labels in which the pathology is absent. True Positives (TP) are the images
for which prediction is abnormal, and the ground truth is also a positive label. In the case
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of True Negative (TN) images, the prediction is normal, and the ground truth is also a
negative label. For False Positive (FP) cases, the prediction is abnormal, but the ground
truth is a negative label, whereas for False Negative (FN) cases, the prediction is normal,
but the ground truth is a positive label.

Accuracy is the ratio of total number of correct predictions to the total number of
images and is expressed as

Accuracy =
TP + TN

TP + FP + TN + FN
. (5)

Precision is the ratio of the total number of predictions that are classified correctly as
positive to the total number of positive predictions:

Precision =
TP

TP + FP
. (6)

Sensitivity or Recall is the ratio of the number of images that are correctly classified as
positive to the total number of positive images:

Sensitivity/Recall =
TP

TP + FN
. (7)

Specificity is the ratio of the number of images that are correctly classified as negative
to the total number of negative images, given by

Speci f icity =
TN

TN + FP
. (8)

F1 score is the harmonic mean between precision and recall and is given by

F1 score =
2

1
Precision + 1

Recall
=

2TP
2TP + FP + FN

. (9)

F1 score is mainly used when the dataset has a class imbalance.
Tables 1–3 present the classification metrics for the IRF, SRF, and PED pathologies.

Table 1. Classification metrics of various models on Intraretinal Fluid pathology.

Performance Measure Noisy Model Inception-ResNet-v2 GCDS
Model

Small Inception-ResNet-v2
GCDS Model

True Positive 8797 8407 8556

False Positive 2919 2213 2803

True Negative 40,224 40,930 40,340

False Negative 710 1100 951

Accuracy 0.9310 0.9370 0.9284

Precision 0.7508 0.7916 0.7532

Sensitivity 0.9253 0.8842 0.9000

Specificity 0.9323 0.9487 0.9350

F1 score 0.8290 0.8353 0.8201
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Table 2. Classification metrics of various models on Subretinal Fluid pathology.

Performance Measure Noisy Model Inception-ResNet-v2 GCDS
Model

Small Inception-ResNet-v2
GCDS Model

True Positive 2182 2291 2017

False Positive 613 1161 365

True Negative 49,641 49,093 49,889

False Negative 214 105 379

Accuracy 0.9842 0.9759 0.9859

Precision 0.7806 0.6636 0.8468

Sensitivity 0.9106 0.9561 0.8418

Specificity 0.9878 0.9768 0.9927

F1 score 0.8406 0.7835 0.8443

Table 3. Classification metrics of various models on Pigmented Epithelial Detachment pathology.

Performance Measure Noisy Model Inception-ResNet-v2 GCDS
Model

Small Inception-ResNet-v2
GCDS Model

True Positive 2714 2699 2531

False Positive 2511 2795 1464

True Negative 46,434 46,150 47,481

False Negative 991 1006 1174

Accuracy 0.9334 0.9278 0.9499

Precision 0.5194 0.4913 0.6335

Sensitivity 0.7325 0.7285 0.6831
Specificity 0.9486 0.9429 0.9701

F1 score 0.6078 0.5868 0.6574

3.2. Visualization Results

In this section, we present the quantitative visualization results of the Grad-CAM,
Grad-CAM++, Score-CAM, Ablation-CAM, Self-Matching CAM, and Ensemble-CAM
visualization techniques on the noisy model, Inception-ResNet-v2 GCDS model, and small
Inception-ResNet-v2 GCDS model. We used IoU and Dice metrics for evaluating the
visualization results. Figures 10–12 show the visualization outputs obtained using the
Grad-CAM technique, binary maps, and ground truths for IRF, SRF, and PED, respectively.

(a) (b) (c) (d)

Figure 10. This figure shows the outputs from the Inception-ResNet-v2 GCDS model: (a) OCT
image; (b) Grad-CAM heat map of OCT image for IRF; (c) binary map of Grad-CAM heat map; and
(d) corresponding ground truth.
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(a) (b) (c) (d)

Figure 11. This figure shows the outputs from the Inception-ResNet-v2 GCDS model: (a) OCT
image; (b) Grad-CAM heat map of OCT image for SRF; (c) binary map of Grad-CAM heat map; and
(d) corresponding ground truth..

(a) (b) (c) (d)

Figure 12. This figure shows the outputs from Inception-ResNet-v2 GCDS model: (a) OCT image;
(b) Grad-CAM heat map of OCT image for PED; (c) binary map of Grad-CAM heat map; and
(d) corresponding ground truth.

3.3. Volume Computation Results

We computed the volume over 73 C-scans obtained from the CIRRUS machine for
all three kinds of models for IRF, SRF, and PED and calculated the IoU mean and stan-
dard deviation, Dice mean and standard deviation, predicted volume mean and standard
deviation, and ground truth volume mean and standard deviation.

4. Discussion

The evaluation of the model’s performance includes various classification metrics,
such as accuracy, precision, sensitivity, specificity, and F1 score. The classification results
for each pathology are presented in Tables 1–3. In the case of IRF, the GCDS model of
Inception-ResNet-v2 outperformed the other two models. Despite reducing the number of
trainable parameters to 28 million from the original 56 million, the model’s performance
metric in terms of F1 score only marginally dropped from 0.8353 to 0.8201. The noisy
model’s performance lies between that of the Inception-ResNet-v2 GCDS model and the
small Inception-ResNet-v2 GCDS model.

For SRF, the small Inception-ResNet-v2 GCDS model exhibited significant improve-
ment over the original Inception-ResNet-v2 GCDS model, with the model’s performance
increasing from 0.7835 to 0.8443. The noisy model’s performance metric in terms of F1 score
was comparable to that of the small Inception-ResNet-v2 GCDS model. Regarding PED,
the small Inception-ResNet-v2 GCDS model outperformed both the Inception-ResNet-v2
GCDS model and the noisy model.

Tables 4–6 present the visualization metrics at a B-scan level, where the Intersection
over Union (IoU) and Dice coefficient are calculated between the binary map obtained
from Otsu thresholding of the Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM, Self-
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Matching-CAM, and Ensemble-CAM heat maps, and the segmentation data masks. For IRF,
the small Inception-ResNet-v2 GCDS model achieved the best IoU using Grad-CAM++.
In the case of SRF, the noisy model achieved the best IoU using the newly proposed
Ensemble-CAM visualization technique. For PED, the small Inception-ResNet-v2 GCDS
model obtained the best IoU using the Self-Matching-CAM visualization technique.

Table 4. Visualization results of various models on Intraretinal Fluid pathology.

Noisy Model Inception-ResNet-v2 GCDS Model Small Inception-ResNet-v2 GCDS Model

IoU Dice IoU Dice IoU Dice

Grad-CAM 0.0909 0.1556 0.1162 0.1912 0.1438 0.2325

Grad-CAM++ 0.1295 0.2105 0.1498 0.2350 0.1615 0.2570

Score-CAM 0.1280 0.2083 0.1390 0.2206 0.1400 0.2274

Ablation-CAM 0.1293 0.2102 0.1497 0.2348 0.0688 0.1165

Self-MCAM 0.0664 0.1195 0.0410 0.0770 0.0345 0.0653

Ensemble-CAM 0.1278 0.2081 0.1393 0.2215 0.1365 0.2238

Table 5. Visualization results of various models on Subretinal Fluid pathology.

Performance
Measure Noisy Model Inception-ResNet-v2 GCDS Model Small Inception-ResNet-v2 GCDS Model

IoU Dice IoU Dice IoU Dice

Grad-CAM 0.0982 0.1711 0.0811 0.1449 0.0413 0.0758

Grad-CAM++ 0.0992 0.1725 0.0834 0.1485 0.0668 0.1207

Score-CAM 0.0517 0.0894 0.0875 0.1552 0.0965 0.1698

Ablation-CAM 0.0869 0.1520 0.0681 0.1218 0.0148 0.0272

Self-Matching-CAM 0.0701 0.1280 0.0758 0.1379 0.0373 0.0707

Ensemble-CAM 0.0995 0.1730 0.0859 0.1524 0.0673 0.1211

Table 6. Visualization results of various models on Pigmented Epithelial Detachment pathology.

Performance
Measure Noisy Model Inception-ResNet-v2 GCDS Model Small Inception-ResNet-v2 GCDS Model

IoU Dice IoU Dice IoU Dice

Grad-CAM 0.1100 0.1924 0.1033 0.1819 0.0740 0.1289

Grad-CAM++ 0.0174 0.0311 0.1187 0.2055 0.1028 0.1785

Score-CAM 0.0175 0.0313 0.1170 0.2033 0.1146 0.1984

Ablation-CAM 0.0176 0.0315 0.1186 0.2054 0.1039 0.1806

Self-Matching-CAM 0.0787 0.1390 0.1239 0.2119 0.1310 0.2145

Ensemble-CAM 0.0177 0.0316 0.1203 0.2082 0.1248 0.2142

Tables 7–23 present the Intersection over Union (IoU) and Dice coefficient on a vol-
umetric level for the region-growing and selective thresholding technique. The mean
and standard deviation of these metrics are calculated for both the predicted and ground
truth volume. The results are presented for all three types of models: the noisy model,
the Inception-ResNet-v2 GCDS model, and the Small Inception-ResNet-v2 GCDS model.
While all the models performed reasonably well on IRF and SRF, their performance in
terms of volume computation for PED was below par.
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Table 7. Volume computation results of various models on Intraretinal Fluid pathology for various
visualization techniques using selective thresholding technique for the noisy model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.19 0.24 0.24 0.24 0.21 0.24

IoU std 0.13 0.14 0.14 0.14 0.10 0.14

Dice mean 0.28 0.35 0.35 0.35 0.32 0.35

Dice std 0.17 0.18 0.18 0.18 0.13 0.18

Predicted vol. mean 0.62 0.35 0.31 0.35 0.27 0.35

Predicted vol. std 0.68 0.23 0.34 0.38 0.23 0.38

Ground truth vol. mean 0.15 0.15 0.15 0.15 0.15 0.15

Ground truth vol. std 0.23 0.23 0.23 0.23 0.23 0.23

Table 8. Volume computation results of various models on Intraretinal Fluid pathology for vari-
ous visualization techniques using selective thresholding technique for the Inception-ResNet-v2
GCDS model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.20 0.25 0.22 0.25 0.16 0.24

IoU std 0.17 0.20 0.20 0.20 0.08 0.20

Dice mean 0.29 0.34 0.30 0.34 0.24 0.33

Dice std 0.21 0.24 0.24 0.24 0.12 0.23

Predicted vol. mean 0.35 0.26 0.37 0.26 0.11 0.25

Predicted vol. std 0.49 0.35 0.45 0.36 0.13 0.35

Ground truth vol. mean 0.15 0.15 0.15 0.15 0.15 0.15

Ground truth vol. std 0.23 0.23 0.23 0.23 0.23 0.23

Table 9. Volume computation results of various models on Intraretinal Fluid pathology for various
visualization techniques using selective thresholding technique for the small Inception-ResNet-v2
GCDS model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.25 0.29 0.23 0.12 0.15 0.27

IoU std 0.17 0.20 0.20 0.10 0.09 0.18

Dice mean 0.34 0.40 0.31 0.17 0.23 0.37

Dice std 0.21 0.24 0.25 0.14 0.13 0.22

Predicted vol. mean 0.18 0.22 0.39 0.09 0.14 0.14

Predicted vol. std 0.18 0.21 0.34 0.09 0.16 0.14

Ground truth vol. mean 0.15 0.15 0.15 0.15 0.15 0.15

Ground truth vol. std 0.23 0.23 0.23 0.23 0.23 0.23

Table 10. Volume computation results of various models on Intraretinal Fluid pathology for various
visualization techniques using region-growing technique for the noisy model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.22 0.25 0.24 0.25 0.22 0.26

IoU std 0.16 0.17 0.17 0.17 0.13 0.17

Dice mean 0.29 0.32 0.32 0.32 0.30 0.33

Dice std 0.20 0.21 0.21 0.21 0.16 0.21
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Table 10. Cont.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

Predicted vol. mean 1.44 0.75 0.47 0.77 0.54 0.72

Predicted vol. std 1.67 0.90 0.58 0.92 0.70 0.90

Ground truth vol. mean 0.15 0.15 0.15 0.15 0.15 0.15

Ground truth vol. std 0.23 0.23 0.23 0.23 0.23 0.23

Table 11. Volume computation results of various models on Intraretinal Fluid pathology for various
visualization techniques using region-growing technique for the Inception-ResNet-v2 GCDS model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.23 0.22 0.22 0.22 0.10 0.23

IoU std 0.18 0.19 0.20 0.19 0.08 0.19

Dice mean 0.29 0.28 0.29 0.28 0.15 0.30

Dice std 0.22 0.22 0.23 0.22 0.12 0.22

Predicted vol. mean 0.82 0.76 0.85 0.77 0.78 0.66

Predicted vol. std 1.08 0.84 0.99 0.87 0.79 0.85

Ground truth vol. mean 0.15 0.15 0.15 0.15 0.15 0.15

Ground truth vol. std 0.23 0.23 0.23 0.23 0.23 0.23

Table 12. Volume computation results of various models on Intraretinal Fluid pathology for var-
ious visualization techniques using region-growing technique for the small Inception-ResNet-v2
GCDS model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.23 0.23 0.15 0.14 0.15 0.24

IoU std 0.18 0.19 0.15 0.14 0.10 0.19

Dice mean 0.30 0.30 0.20 0.18 0.19 0.31

Dice std 0.23 0.24 0.20 0.18 0.15 0.23

Predicted vol. mean 0.87 0.62 0.94 0.94 0.65 0.60

Predicted vol. std 1.16 0.66 0.85 0.97 0.85 0.87

Ground truth vol. mean 0.15 0.15 0.15 0.15 0.15 0.15

Ground truth vol. std 0.23 0.23 0.23 0.23 0.23 0.23

Table 13. Volume computation results of various models on Subretinal Fluid pathology for various
visualization techniques using selective thresholding technique for the noisy model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.16 0.17 0.06 0.15 0.16 0.17

IoU std 0.11 0.11 0.10 0.10 0.09 0.11

Dice mean 0.25 0.26 0.09 0.24 0.26 0.26

Dice std 0.15 0.15 0.14 0.13 0.12 0.15

Predicted vol. mean 0.66 0.62 5.98 0.55 0.36 0.61

Predicted vol. std 0.96 0.87 6.81 0.72 0.52 0.87

Ground truth vol. mean 0.37 0.37 0.37 0.37 0.37 0.37

Ground truth vol. std 0.71 0.71 0.71 0.71 0.71 0.71
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Table 14. Volume computation results of various models on Subretinal Fluid pathology for vari-
ous visualization techniques using selective thresholding technique for the Inception-ResNet-v2
GCDS model.

Model Grad-CAM Grad-
CAM++ Score-CAM Ablation-

CAM
Self-Matching-

CAM
Ensemble-

CAM
IoU mean 0.09 0.11 0.13 0.09 0.13 0.11

IoU std 0.09 0.11 0.12 0.08 0.10 0.12
Dice mean 0.15 0.16 0.19 0.14 0.21 0.17

Dice std 0.13 0.15 0.17 0.11 0.14 0.16
Predicted vol. mean 0.63 0.56 0.46 0.48 0.12 0.52

Predicted vol. std 0.85 0.71 0.61 0.57 0.21 0.67
Ground truth vol. mean 0.37 0.37 0.37 0.37 0.37 0.37
Ground truth vol. std 0.71 0.71 0.71 0.71 0.71 0.71

Table 15. Volume computation results of various models on Subretinal Fluid pathology for various
visualization techniques using selective thresholding technique for the small Inception-ResNet-v2
GCDS model.

Model Grad-CAM Grad-
CAM++ Score-CAM Ablation-

CAM
Self-Matching-

CAM
Ensemble-

CAM
IoU mean 0.07 0.13 0.18 0.01 0.14 0.10

IoU std 0.07 0.12 0.14 0.02 0.09 0.11
Dice mean 0.11 0.21 0.27 0.02 0.21 0.15

Dice std 0.11 0.16 0.19 0.03 0.15 0.15
Predicted vol. mean 0.22 0.17 0.19 0.13 0.19 0.69

Predicted vol. std 0.36 0.30 0.33 0.18 0.25 0.66
Ground truth vol. mean 0.37 0.37 0.37 0.37 0.37 0.37
Ground truth vol. std 0.71 0.71 0.71 0.71 0.71 0.71

Table 16. Volume computation results of various models on Subretinal Fluid pathology for various
visualization techniques using region-growing technique for the noisy model.

Model Grad-CAM Grad-
CAM++ Score-CAM Ablation-

CAM
Self-Matching-

CAM
Ensemble-

CAM
IoU mean 0.31 0.30 0.12 0.28 0.28 0.31

IoU std 0.19 0.18 0.16 0.17 0.16 0.19
Dice mean 0.39 0.38 0.14 0.36 0.36 0.39

Dice std 0.22 0.21 0.19 0.20 0.19 0.22
Predicted vol. mean 1.16 1.10 9.08 1.01 1.14 1.08

Predicted vol. std 1.16 1.15 8.78 1.40 1.48 1.54
Ground truth vol. mean 0.37 0.37 0.37 0.37 0.37 0.37
Ground truth vol. std 0.71 0.71 0.71 0.71 0.71 0.71

IoU and Dice results: In certain cases of performance evaluation, such as in PED,
we observed that the standard deviation is greater than the mean. This indicates that the
model’s performance is inconsistent, and there is a large variability in the results obtained
across different evaluations or samples. It also suggests that the model’s performance varies
widely from one test instance to another, indicating outliers, instability, and unpredictability.
On the other hand, for IRF and SRF, this anomaly was not observed, indicating that the
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model’s performance is relatively consistent, with the results clustering closer to the mean.
A lower standard deviation indicates that the model’s performance is more stable and
less prone to significant variations across different evaluations. In summary, when the
standard deviation is greater than the mean, it implies inconsistency and variability in the
performance of the model, whereas when the mean is greater than the standard deviation, it
suggests stabler and consistent model performance across different evaluations. The specific
interpretation may vary based on the context of the evaluation and the performance
metric used.

Table 17. Volume computation results of various models on Subretinal Fluid pathology for various
visualization techniques using region-growing technique for the Inception-ResNet-v2 GCDS model.

Model Grad-CAM Grad-
CAM++ Score-CAM Ablation-

CAM
Self-Matching-

CAM
Ensemble-

CAM
IoU mean 0.12 0.17 0.22 0.14 0.20 0.17

IoU std 0.13 0.15 0.16 0.13 0.15 0.14
Dice mean 0.16 0.22 0.29 0.19 0.26 0.22

Dice std 0.16 0.18 0.19 0.16 0.19 0.18
Predicted vol. mean 0.84 0.88 1.16 1.58 0.89 4.39

Predicted vol. std 1.05 0.87 1.05 1.16 1.17 4.21
Ground truth vol. mean 0.37 0.37 0.37 0.37 0.37 0.37
Ground truth vol. std 0.71 0.71 0.71 0.71 0.71 0.71

Table 18. Volume computation results of various models on Subretinal Fluid pathology for var-
ious visualization techniques using region-growing technique for the small Inception-ResNet-v2
GCDS model.

Model Grad-CAM Grad-
CAM++ Score-CAM Ablation-

CAM
Self-Matching-

CAM
Ensemble-

CAM
IoU mean 0.13 0.19 0.27 0.13 0.21 0.14

IoU std 0.18 0.18 0.19 0.11 0.17 0.16
Dice mean 0.17 0.25 0.35 0.18 0.27 0.19

Dice std 0.22 0.22 0.23 0.15 0.20 0.20
Predicted vol. mean 0.93 0.66 0.51 1.75 0.96 0.62

Predicted vol. std 1.51 1.02 0.78 1.20 1.55 0.86
Ground truth vol. mean 0.37 0.37 0.37 0.37 0.37 0.37
Ground truth vol. std 0.71 0.71 0.71 0.71 0.71 0.71

Table 19. Volume computation results of various models on Pigmented Epithelial Detachment pathol-
ogy for various visualization techniques using selective thresholding technique for the noisy model.

Model Grad-CAM Grad-
CAM++ Score-CAM Ablation-

CAM
Self-Matching-

CAM
Ensemble-

CAM

IoU mean 0.02 0.00 0.00 0.00 0.01 0.00

IoU std 0.03 0.01 0.01 0.01 0.02 0.01

Dice mean 0.04 0.01 0.01 0.01 0.02 0.01

Dice std 0.05 0.02 0.02 0.02 0.03 0.02

Predicted vol. mean 1.52 0.61 0.61 0.61 3.67 0.61

Predicted vol. std 1.28 0.67 0.67 0.67 3.31 0.67

Ground truth vol. mean 0.62 0.62 0.62 0.62 0.62 0.62

Ground truth vol. std 0.48 0.48 0.48 0.48 0.48 0.48
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Fluid volume computation: If the data points in the dataset have a wide range and
are spread out, it results in a large standard deviation. This can happen when there are
extreme values (outliers) that are significantly different from the rest of the data. In our
case, for some patients, the fluid volume calculated was pretty high, making them outliers.
Hence, the standard deviation is more than the mean in some cases.

Table 20. Volume computation results of various models on Pigmented Epithelial Detachment pathol-
ogy for various visualization techniques using selective thresholding technique for the Inception-
ResNet-v2 GCDS model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.01 0.02 0.02 0.02 0.01 0.02

IoU std 0.02 0.02 0.02 0.02 0.01 0.02

Dice mean 0.03 0.03 0.03 0.03 0.01 0.03

Dice std 0.04 0.04 0.04 0.04 0.02 0.04

Predicted vol. mean 0.84 0.52 0.55 0.52 0.20 0.49

Predicted vol. std 0.85 0.53 0.56 0.53 0.28 0.54

Ground truth vol. mean 0.62 0.62 0.62 0.62 0.62 0.62

Ground truth vol. std 0.48 0.48 0.48 0.48 0.48 0.48

Table 21. Volume computation results of various models on Pigmented Epithelial Detachment
pathology for various visualization techniques using selective thresholding technique for the small
Inception-ResNet-v2 GCDS model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.02 0.02 0.01 0.01 0.01 0.01

IoU std 0.03 0.02 0.02 0.02 0.01 0.02

Dice mean 0.03 0.03 0.02 0.02 0.02 0.02

Dice std 0.05 0.04 0.04 0.04 0.02 0.03

Predicted vol. mean 0.99 0.76 0.43 0.35 0.19 0.28

Predicted vol. std 0.90 0.70 0.40 0.33 0.25 0.28

Ground truth vol. mean 0.62 0.62 0.62 0.62 0.62 0.62

Ground truth vol. std 0.48 0.48 0.48 0.48 0.48 0.48

Table 22. Volume computation results of various models on Pigmented Epithelial Detachment
pathology for various visualization techniques using region-growing technique for the noisy model.
GT stands for ground truth provided by an expert.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.04 0.04 0.01 0.01 0.04 0.05

IoU std 0.03 0.04 0.01 0.02 0.05 0.06

Dice mean 0.06 0.07 0.01 0.01 0.07 0.08

Dice std 0.05 0.06 0.02 0.02 0.07 0.05

Predicted vol. mean 4.99 4.85 2.26 12.31 5.85 2.36

Predicted vol. std 4.05 4.46 1.46 8.34 4.57 1.99

GT vol. mean 0.62 0.62 0.62 0.62 0.62 0.62

GT vol. std 0.48 0.48 0.48 0.48 0.48 0.48
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Table 23. Volume computation results of various models on Pigmented Epithelial Detachment
pathology for various visualization techniques using region-growing technique for the Inception-
ResNet-v2 GCDS model.

Model Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM Self-Matching-CAM Ensemble-CAM

IoU mean 0.06 0.04 0.03 0.05 0.05 0.05

IoU std 0.04 0.04 0.03 0.04 0.04 0.04

Dice mean 0.09 0.07 0.05 0.09 0.09 0.09

Dice std 0.06 0.06 0.04 0.06 0.06 0.06

Predicted vol. mean 2.24 4.85 1.52 2.02 3.10 1.76

Predicted vol. std 1.89 4.46 1.56 1.07 3.22 1.49

Ground truth vol. mean 0.62 0.62 0.62 0.62 0.62 0.62

Ground truth vol. std 0.48 0.48 0.48 0.48 0.48 0.48

5. Conclusions

In this paper, we presented a technique to compute the retinal fluid volume starting
from deep-learning-based visualization modules such as Grad-CAM, Grad-CAM++, Score-
CAM, Ablation-CAM, Self-Matching-CAM, and Ensemble CAM optimized on 73 C-scans
obtained from CIRRUS and PRIMUS OCT machines. The visualization techniques are
applied to the models trained on the Inception-ResNet-v2 and small Inception-ResNet-v2
architectures. The calculated volume is obtained using two techniques based on the region-
growing algorithm and selective thresholding scheme and compared. Automatic volume
computation using AI helps in reducing the effort put in by the annotators and reduces
intraobserver and interobserver variability.
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